

Pr

$$
7 \frac{2}{6}
$$

Digitized by the Internet Archive in 2015

C. Merinanation:

Y Givomove: 1823.

2HE
 $A \quad R \quad \tau$
 $0 F$
 DRAWING IN PERSPECTIVE

MADE EASX.

EDINBURGH:
RRINTED BY J. PILLANS \& SONS, $\}$
LAWNMARKET.

THE

A $\mathbb{R} \quad \mathbb{T}$

OF

DRAWING IN PERSPEGIIVE

MADE EASY

IO THOSE WHO HAVE NO PREVIOUS KNOWLEDGE
OF THE MATHEMATICS．

A NEW EDITION．

By JAMES FERGUSON，F．R．S．

ILIUSTRATED WITH PIATES．

EDINBURGH：

grinted for DENHAM \＆DICK，19．collece－street．
SOLD BY
STEVIART CHEYNE，GEORGE－STREET，EDINBU゙RCH；A．K．
N．AIRN，N゚C． 23 ．CHANDOIS－STREET，LONDON；
ARCLER \＆WARD，AND I．STORIE， BELFSST．
18气3．

PREFACE.

1N my infirm ftate of health, a fituation that is very apt to affect the mental faculties, I thought my late book of Mechanical Exercifes would have been the laft I fhould ever publifh. But, as I have been conftantly accuftomed to an active life, and to confider idlenefs as an infupportable burden, I have of late amufed myfelf at intervals, as my ufual bufinefs would permit, with ftudying Perfpective; which is an art that every one who makes drawings, were it but for plates (efpecially of folid figures) in books, fhould be acquainted with. And indeed I drew the figures which are now engraved for this Book, with
no other view than to inftruct others verbally by, who came to me to learn fomething of that branch of fcience, without having the leaft thought of ever laying them before the Public.

But, upon fhewing thefe drawings accidentally to fome friends, they ex-. preffed their defire that I fhould write a defcription of the rules by which they were delineated. I complied with their defire; and it is entirely owing to their partiality to me that I have confented to this publication.

I NEED not obferve how requifite it is for painters who put groupes of figures together, but alfo for thofe who draw landfcapes, or figures of machines and engines for books, to know the rules of Perfpective. The want of this branch of knowledge is the reafon why we not only fee very

PREFACE.

bad and diftorted figures of machines and engines in printed books, but alfo why we fee many hiftorical paintings, in which the different pictures of men, women, hills, houfes, birds, and beaft, are put together without any regard to what painters call keeping; which is the fame thing as reprefenting objects in the fame manner that they appear to the eye, at different diftances from it,

I shall only mention two inftances in the Works of one of the greateft painters that ever exifted $;-I$ mean the celebrated Raphael Urbin.

Every man is fenfible, that, if he fhould ftand by the fea-fide, and look at a boat with men in it at fome diftance, he could not diftinctly fee the features of thofe men, much lefs the wrinkles and marks of the mufcles

$$
\mathrm{A}_{2}
$$

in
iv. PREFACE.
in their faces or bare arms. And if he were in a boat, at fome diftance from the land, he could not perceive the eyes and beaks of fowls on the fhore.

Yet fo it is, that, in one of the famous Cartons of Raphael, reprefenting the miraculous draught of fifhes, the men in each of the two boats appear of full fize, the features of their faces ftrongly marked; and the boats are reprefented fo fmall, and the men 10 big, that any one of them appears fufficient to fink either of the boats by his own bare weight; and the fowls on the fhore are likewife drawn fo big, as to feem very near the eye of the obferver; who could not poffibly, in that cafe, diftinguifh the features of the men in the diftant boats. Or, fuppofing the obferver to be in either
of the boats, he could not fee the eyes or beaks of the fowls on the fhore,

The other inftance is of a very capital miftake in Raphael's hiftorical picture of our Saviour's transfiguration on the Mount; where he is reprefented with thofe who were then with him, almoft as large as the reft of his difciples at the foot of the Mount, with the father and mother of the boy whom they brought to be cured: and the mother, though on her knees, is more than half as tall as the Mount is high. So that the Mount appears only of the fize of a little hay-rick, with a few people on its top, and a greater number at its bottom on the ground: in which cafe, a fpectator at a little diftance could as well diftinguifh the features of thofe on the top as thofe on the ground. But upon any large eminence, deferv-- A 3 ing
ing the name of a Mount, that would be quite impoffible.-My only reafon for mentioning thefe extraordinary particulars, is to fhew how neceffary it is for painters to be well acquainted with the rules of Perfpective.

I am far from confidering the following Work as a complete fyftem of Perspective, for that would require a very large volume. But I think I may venture to fay, that, when the learner is fully mafter of what is there contained, he will not find any great difficulty in proceeding to what length he pleafes in the attainment of this fcience, without any further affift-ance.-Or, if he fhould grow tired, and be weary of going on according to the rules, he may make ufe of the Perfpective Machine defcribed and delineated at the end of this fmall tract, by which he may draw every thing
equally eafy that he fees before him, without knowing any rule at all. But I hope there are very few who will have recourfe to fuch an unfcientific method.

It is very probable, that thofe who already underftand Perfpective, if they take the trouble of reading this fmall Treatife, may think I have been rather too verbofe in moft of my defcriptions. I only requeft of fuch to confider, that I never wrote any thing for thofe who are well fkilled in the few branches of fcience whereof I have treated, but only for thofe who wifh to attain a moderate knowledge of them; and to fuch, I think, every thing ought to be made as plain and eafy, and be as minutely defcribed, as is poffible.

PERSPECTIVE MADE EASY.

C H A P. I.

The Theory of Perspective.

PERspective is the art of drawing the refemblances or pictures of objects on a plane furface, as the objects themfelves appear to the eye. -Thus, fuppofe a perfon at a window looks through an upright pane of glafs at any object beyond it, and, keeping his head fteady, draws the figure of the object upon the glafs with a blacklead pencil, as if the point of the pencil touched the object itfelf; he would then have a true reprefentation of the object in perfpective, as it appears to his eye.

In order to this, two things are neceffary ; firft, that the glafs be laid over with ftrong gum-water, which, when dry, will be fit for drawing upon, and will retain the traces of the pencil; and, fecondly, that he looks through a fmall hole in a thin plate of metal, fixed about a foot from the glafs, between it and his eye, and that he keeps his eye clofe to the hole; otherwife he might fhift the pofition of his head, and confequently make a falfe delineation of the object.

Having traced out the figure of the ubject, he may go over it again with pen and ink, and, when that is dry, put a fheet of paper upon it, and trace it thercon with a pencil ; then, taking away the paper, and laying it on a table, he may finith the picture, by giving it the colours, lights, and hhades, as he fees them in the object itfelf;
itfelf; and then he will have a true refemblance of the object.
2. The nearer that any object is to the eye, the bigger it appears; the farther from the eye, fo much the lefs, both in height and breadth.
3. All objects become vifible by the rays of light which flow from them into the eye. Thefe rays pafs through the pupil, and fall upon the retina, which is a fine expanfion of the optic nerve, interwoven like net-work in the back-part or bottom of the eye; and there the rays form a picture of the object, whofe apparent bulk depends upon the fize of fuch picture, fo formed upon the retina.

In Fig. I. of Plate I . let $P b d \subset a P$ be the eye, P the pupil, or round black opening in the middle or fore-part of the
the eye, through which the rays of light enter, and proceed to the retina or back-part $b c d a$, where they are intercepted, and form the pictures of the objects from which they flow. Every point of the object throws off rays of light in all manner of ftraightlined directions ; and therefore, every vifible point of an object will fend fome rays through the pupil into the eye ; and thefe rays, falling upon the retina, will form all the correfponding points of the picture or image of the object thereon. The rays are coloured according to the colours of the objects they flow from, and give the like colours to its picture formed in the eye.
4. To fhew that the pictures of objects are thus formed upon the retina, take the eye of a fheep or bullock, newly killed, and cut off all the opaque
part from the outfide of the back of the eye, till the tranfparent retina appears; then hold up the eye between your own eye and any object, with the fore-part of the eye toward the object, and you will fee a fine inverted picture of the object on the retina, having all the colours of the object itfelf.
5. In Fig. i. let A e B be an object, whofe diftance from the eye is $P e$. A ray $A P a$ from the top of the object, paffing through the pupil P of the eye, and going on to the retina, forms the picture or image of the point A thereon, at a; and a ray $B P b$, from the foot of the object, paffing through the pupil P, and going on to the retina, forms the image of the point B at b on the retina.-All the intermediate points of the object, from A to B, fend rays of light into the
eye, which form all the intermediate points of the image between a and b in the eye. So that the image of the object is inverted in the eye; and its whole length is included between the points a and b on the retina. Thofe who want to know why we fee the objects themfelves in an inverfe pofition to that of their pictures in the eye, muft read what optical writers have faid on that fubject.

Let the fame object be placed twice as far from the eye, as at $C D$; then the diftance $P f$ will be double the diftance P_{e}. The ray $G P_{c}$ forms the image of the top C at c on the retina, and the ray $D P d$ forms the image of the bottom-point D of the object at d on the retina. - Now, it is plain, that as the fpace between c and d is only equal to half the fpace between a and b, the image of the object will be but
half as long upon the retina, when the diftance $P f$ of the object is twice as great as its diftance $P e$ was before:

- And thus, by removing the object further and further from the eye, or removing the eye further and further from the object, it would feem at laft to be no bigger than a mere point, becaufe the angle under which it was then feen would be next to nothing.

6. An angle is formed by two lines approaching toward each other till they meet; and the point where they meet is termed the angular point. Thus, in Fig. I. the lines $A P$ and $B P$ tending toward one another, form an angle; and the point where they meet at P is the angular point; and whether thefe lines be long or fhort, it makes no alteration in what is termed the meafure of the angle; as we hall hew in the next fection.

In defcribing an angle, three letters are generally ufed, the middle letter always meaning the angular point where the two lines meet. Thus, $A P$ B denotes the angle formed by the two lines $A P$ and $B P$, meeting at P; and C $P D$ denotes the angle formed by the two lines $C P$ and $D P$, meeting at P. In this cafe, as the object A e B fubtends (or is feen under) the angle $A P B$, and the object $G f D$ is feen under the angle $C P D$, the former is called the angle of vifion of the object $A e B$, and the latter the angle of vifion of the object $C f D$. But, as the lines $C P$ and $D P$ fall within the lines $A B$ and $B P$, the angle of vifion of $C f D$ is lefs than the angle of vifion of $A e B$; and juft as much lefs as the diftance of the object $C f D$ from the eye, is greater than the diftance of the object A e B from it. -So that the apparent height (or breadth) of any
object is directly as the meafure of the angle under which it is feen.
7. If a circle, of any diameter whatever, be divided into 360 equal parts or degrees, and the angular point be at the centre, the number of degrees between the two lines which form the angle is the meafure thereof. Thus, in Fig. 2. of Plate I. the lines $A C$ and $B C$ form the angle $A C B ;$ of which, the point C at the centre of the femicircle $d A B e$ is the angular point; and the number of degrees of the femicircle contained between the points A and B, in the $\operatorname{arc} A B$, is the meafure of the angle $A C B$.

Let the femicircle be divided into three equal parts, as $d A, A B$, and $B e$; then each part will contain 60 degrees (the whole femicircle containing 80), and that will be the meafure of
either of the three angles $d C A, A C B$, or $B C e$.

Join the points A and B by the ftraight line $A B$, and a triangle will be formed by the three lines $C A, A \cdot B$, and $B C$, all of equal length; and all the three angles at A, B, and C, will be equal, each containing 60 degrees.-So likewife, in the leffer femicircle $k a b l$, the lines $a b, b C$, and $C a$, are of equal length ; and each angle at C, a, and b, contains 60 degrees.
8. Any triangle whofe fides are all equal, is called an equilateral triangle; and the angle oppofite to either fide thereof contains 60 degrees.
9. To make an equilateral triangle upon a line of any given length, as fuppofe the line $A B$ (Plate I. Fig. 2.); take the length $A B$ between "the points of
your compaffes, and, with that extent, fet one foot on the end of the line at A, and with the other foot defcribe the $\operatorname{arc} f C g$; then, without altering the compaffes, fet one foot on the end B, and with the other foot defcribe the arc $b C i$: laftly, from the ends A and B draw the two lines $A C$ and $B C$ to the interfection of thefe arcs at C; and you will have an equilateral triangle, formed by the three lines or fides $A B, D C$, and $C A$; and each fide will fubtend an angle of 60 degrees.-In the fame manner may an equilateral triangle be made upon the given line $a b$, by the lines $b C$ and $G a$.
10. No object can be wholly and diftinctly feen (if the eye be kept fteady while looking at it) under a larger angle than that of 60 degrees. -Thus, an eye at C may fee the whole

$20 \quad$ PERSPECTIVE

Tine or object $A B$ (or $a b$), without moving or ftraining, when the diftance of the eye from each end of the line is juft equal to the length of the line, or object.-And as this is generally reckoned to be a good angle of vifion, we fhall keep generally by it, in the following practical part of this Work, where the reprefentations of large objects are delineated. But it will not do fo well in reprefenting fmall objects, which are better feen under a fmaller angle than that of 60 degrees: for, when a perfon looks at a common drinking-glafs, or a dye, he never brings it fo near to his eye (unlefs he be very near-fighted) as to view it under fo large an angle as that of 60 degrees; becaufe experience teaches him, that he can fee it better under a fmaller angle; that is, when at a greater diftance from his eye. Thus, the fmall object $a b$ will
will be better feen by an eye at D, viewing it under an angle of 30 degrees, (as $a D b$), than if his eye were only at half that diftance at C, viewing the fame object $a b$ under an angle $(a C b)$ of 60 ; and therefore, in delineating the perfpective figures of fmall objects, the artift fhould always fuppofe the obferver to be fo far off from the object, as to be viewing it under a lefs angle than that of 60 degrees : and then the perfpective picture will appear more natural, and confequently fo much the more pleafing to the eye.
11. When a perfon fands right againft the middle of one end of a long avenue or walk, which is ftraight, and equally broad throughout; the fides thereof feem to approach nearer and nearer to each other as they are further and further from his eye, as
the angles under which their different parts are feen become lefs and lefs, according as the diftance from his eye increafes, (§2. and 5.) ; and if the avenue be very long, the fides of it at the fartheft end will feem to meet; and there, an object that would cover the whole breadth of the avenue, and be of a height equal to that breadth, would appear only to be a mere point.

Thus, in Fig. 3. of Plate I. let $A B$ be part of one fide of a long avenue, $D C$ as much of the other fide thereof, and thefe fides be parallel to each other ; and fuppofe the avenue to be divided into equal fquares, as A ef D, $e g b f, g i b k, \& c . ;$ a perfon fanding at O will fee thefe two fides as if they were gradually approaching toward one another, as in Fig. 4.; and the fquares will feem to diminifh in fize
as they are further and further from his eye. So that the firft fquare A efD in Fig. 3. will appear as A e $f D$ in Fig. 4. the fecond fquare eg bf in Fig. 3. will appear as $e g b f$ in Fig. 4. and fo on, till the lift fquare of the avenue, produced to the utmost bounds of fight, would vanifh into a point, as S in Fig. 4. where the fides $A S$ and $D S$ meet.
12. The point S, where the parallel fides of the avenue feem to meet, is called The Point of Sight; the point O, where the obferver's eye is placed, is called The place of the Obferver; the line $S P$, paffing through the point of fight, is called The Horizon; and a point taken therein, either to the right or left hand from S, and as far from S as O is from S, is called The Point of Diftance.——N. B. In whatever point the obferver's eye is fuppofed to be

24 PERSPECTIVE

placed, either for a direct or oblique view of the fide of the object that is neareft to him, a fraight line drawn from the point of fight to bis eye muft be perpendicular to the horizon; which will be nearer to the eye, or further from it, as the obferver is fuppofed to ftand upon lower or higher ground.

GHAP

C H A P. II.

The Practice of Perspective.

OPERATION I.

To put a Square in Perfpective, as viewed Ly an Obferver fanding right againft the Middle of one of its Sides, and baving his Eye above the Plane of the Square.
3. TN Fig. 5. of Plate I. let $A B C D$ be a fquare, viewed by an obferver at O, who fees the fide $A D$ (next to him) under the angle $A C D$ of 60 degrees (\$ IO.).

Make $A D$ in Fig. 6. equal to $A D$ in Fig. 5. At any convenient diftance, draw the horizon $S P$ parallel to $A D$. Take O, the place of the obferver, according

26 PERSPECTIVE

cording to the rule in $\oint 9 . ;$ and from the point O, make $O S$ perpendicular to $S P$, meeting it in S, which fhall be the point of fight ($\$ 12$.).

TAKE OS' in your compaffes, and, fetting one foot in S, defcribe the quadrant $(O p P)$ of a circle meeting the horizon in P, which, in all cafes, fhall be the true point of diftance ($\oint 12$.).

Fron A and D (the ends of the fide of the fquare next the obferver at O) draw the ftraight lines $A S$ and $D S$ to the point of fight S : then, from A draw the ftraight line $A P$ to the point of diftance P in the horizon, cutting the line $D S$ in the point C : this done, draw $B C$ parallel to $A D$; and $A B C D$ will be a true perfpective reprefentation of the firft fquare $A B C D$ in Fig. 5. as feen by an obferver at O.

Remark.

Remark.-If the obferver(Fig. 6.) had

 ftood further than O from the fide $A D$ of the fquare, as fuppofe at a, he would have feen that fide under a lefs angle than 60 degrees; as the angle $A O D$ is. lefs than the angle $A O D$: and then, the point of diftance muft have been at d in the horizon ; becaufe the point of diftance in the horizon muft always be taken as far from the point of fight therein, as the place of the obferver (0 or 0) is from the point of fight, as we fhall prove in § I4.; and that, if the point of diftance in the horizon be taken either nearer to or further from the point of fight than the diftance of the obferver is fuppofed to be from that point, there will unavoidably be a falfe perfpective reprefentation of the object.For, fuppofe the placing of the point of diftance in the horizontal line be
left to the difcretion of the artift, as is generally done by writers on the fcience of Perfpective, and that he had put it at e (Fig. 6.) in the line $S P$; then, a ftraight line drawn from A to e would have cut the line $D S$ in the point h; and $g b$ (parallel to $A D$) would have been the top of the fquare $A g b D$; but it is plain to the eye and judgement, that $A g h D$ would have been a very bad and unnatural perfpective reprefentation of the fquare $A B C D$ in Fig. 5. Or, fuppofing the point of diftance (Fig. 6.) to have been taken at f, in the horizon $S P$, the ftraight line $A f$ would have cut $D S$ in k; and $i k$ would have been the top of the fquare. But a child could tell, that AikD would be a monftrous reprefentation of a fquare in perfpective.

The angle of 60 degrees is only affumed here, as being the largeft angle
under which the eye can fee an object diftinctly; and not as a conftant angle, under which all reprefentations in perfpective muft be drawn. See § 10.

A Demonftration of the above Rule ($\$ \mathrm{I} 2$. and 13.) for finding the true Point of Diftance.
14. In Fig. 1 . of Plate II. let $A I$ and $D K$ be part of the two parallel fides of a ftraight avenue, divided into equal fquares, as $A B C D, B E F C, E G H F$, $\& c$. and let trees be planted at the corners of each fquare, as at A, B, C, D, E, F, G, H, I, and K.

Let O be the place of the obfervert, $S P$ his horizon, and S the utmoft point of his view, called the point of fight; from which the line $S O$ is perpendicular to $S P$, (fee $\S 12$.). To him

30 PERSPECTIVE

him the two fides of the avenue feem to come nearer and nearer to one another, as they are farther and farther from his eye, tending toward the point of fight S, in the direction of the two ftraight lines $A S$ and $D S,(\oint$ II.).

In the parallel-fided avenue, draw a ftraight line $B O$ from the tree B to the obferver's eye at O; this line cuts the perfpective fide $A S$ of the avenue in the point b, which is the apparent place of the tree as feen by the obferver. From the tree C draw the ftraight line $G O$ to the obferver's eye at O, and that line will, cut the perfpective fide $D S$ of the avenue in the point c, which is the apparent place of the tree as feen from O; then draw bc parallel to $A D$, and $A b c D$ will be the true perfpective reprefentation of the fquare $A B C D$.

In like manner, from the other trees E, G, I, and F, H, K, draw ftraight lines to the obferver's eye at O; and tnefe lines will cut the perfpective fides $A S$ and $D S$ of the avenue in the points e, g, i, and f, b, k; which are the apparent places of the trees, as feen by the obferver. Laftly, draw the lines $e f$, $g h, i k$, parallel to $A D$, and they will divide the perfpective view of the avenue, fo as to make it a juft reprefentation thereof, with all its trees and fquares, as feen from O.

Thus we find the apparent places of the trees B, E, G, I, muft demonftratively be at b, e, g, i; and that the apparent places of the trees C, F, H, K, muft be at c, f, b, k, as feen from the point O : the trees A and D, which are neareft to the eye, appear in their true places.-Now, we fhall fee, by placing the point of diftance in the horizon $S P$,
according

3^{2} PERSPECTIVE

according to the above-mentioned rule, whether we fhall or fhall not have the apparent places of the trees in the fame points as before, without drawing lines from their true places in the fides of the avenue to the pbferver's eye at 0 .

Take $S P$ equal to $S O$, and call P the point of diftance. From A draw the ftraight line $A P$, interfecting the perfpective fide $D S$ of the avenue in the point c, and to that point draw $b c$ parallel to $A D$; and you have the firft perfpective fquare $A b c D$ of the avenue, the very fame as was found before, by the lines $B O$ and $C O$.

From the point b draw $b P$, interfecting $D S$ in the point f; and to that point draw ef parallel to $4 D$, and you have the fecond perfpective fquare $b_{\text {ef }} c$, the fame as Lefore.

From the point e draw $e P$, interfecting $D S$ in the point b, and draw $g b$ parallel to $A D$; then $e g b f$ will be the third perfpective fquare of the avenue, as before.

From the point g draw $g P$, interfecting $D S$ in the point k, and draw $i k$ parallel to $A D$, which finifhes the fourth and laft perfpective fquare gikb of the avenue.

In the fame manner you may go on, drawing as many more perfective fquares up towards S as you pleafe.

Now, as the ftraight lines $A P, b P$, $e P$, and $g P$, (all drawn to the point of diftance P), give the fame points b, e, g, i, and c, f, h, k, for the apparent places of the trees, as viewed from O, that the lines $B O, E O, G O, I O$, and
$C O, F O, H O$, and $K O$, gave before, when drawn from the places of the trees themfelves; it is plain, that we have put the point of diftancel P in the very point where it ought to be; that is, juft as far from the point of fight S as the obferver's eye at O is from it.

And hence it is evident, that, fuppofing the eye to be at O, if the point of diftance had been taken any where between P and S^{\prime} in the horizon $S P$, all the lines drawn from it into the perfpective avenue $A i k D$ would have gone above their true places, and would have given the points for the apparent places of the trees beyond thofe in which the eye at O could fee them ; and would alfo have made all the perfpective fquares in the avenue too broad. - On the contrary, if the point of diftance had been taken any
where beyond P from S, all the lines drawn from that point of diftance would have gone below their true places in the perfpective avenue; and confequently have brought the apparent places of the trees too near the obferver's eye, and have made all the perfpective fquares of the avenue narrower than they could really appear to the obferver at 0 .
15. Hence it is manifeft, that, when large objects are to be drawn in perfpective, the point of diftance muft be taken at leaft as far from the point of fight, as the obferver could fand from the point of fight when he fees the fide of the object next to him under an angle of fixty degrees. But in drawing agreeable perfpective views of fmall objects, the obferver fhould be "confidered as viewing them under an angle not exceeding 30 degrees at moft : and fuppofing him to fee them

36 PERSPECTIVE

under that angle, take the diftance of his place from the point of fight in your compaffes, and fet off that extent from the point of fight in the horizon, to find the point of diftance, therein.

OPERATION II.

To put a Square in Perfpective, as feen by a Perfon not flanding right againft the Middle of either of its Sides, but rather nearly even with one of its Corners.
16. In Fig. 7. of Plate I. let $A B C D$ be a true fquare, viewed by an obferver, not ftanding at 0 , directly againft the middle of its fide $A D$, but at O almoft even with its corner D, and viewing the fide $A D$ under the angle $A O D$; the angle $A \circ D$ (under
der which he would have feen $A D$ from o) being 60 degrees.

Make $A D$ in Fig. 8. equal to $A D$ in Fig. 7. and draw $S P$ and 00 parallel to $A D$. Then, in Fig. 8. let O be the place of the obferver's eye, and $S O$ be perpendicular to $S P$ (as before, § 12. 13.), then S fhall be the point of fight in the horizon $S P$.

Take $S O$ in your compaffes, and fet that extent from S to P; then P fhall be the true point of diftance, taken according to the foregoing rules, $§ 12$. and 13 .

From A and D draw the ftraight lines $A S$ and $D S$: draw alfo the ftraight line $A P$, interfecting $D S$ in C. Laftly, to the point of interfection G draw $B C$ parallel to $A D$; and $A B C D$ in Fig. 8. will be a true perfpective C 3 repre
reprefentation of the fquare $A B C D$ in Fig. 7. The point M is the centre o each fquare, and $A M C$ and $B M D$ are the diagonals.

OPERATION III.

To put a reticulated Square in Perfpective, as feen by a Perfon ftanding oppofite to the Middle of one of its Sides.
17. A reticulated fquare is one that is divided into feveral little fquares, like net-work, as Fig; 4. of Plate II. each fide of which is divided into four equal parts, and the whole furface into four times four (or 16) equal £quares.

Having divided this fquare into the given number of leffer fquares, draw the two diagonals $A \times C$ and $B \times D$.

Make

Make $A D$ in Fig. 5. equal to $A D$ in, Fig. 4. and divide it into four equal parts, as $A e, e g, g i$, and $i D$.

Draw $S P$ for the horizon, parallel to $A D$, and, through the middle point g of $A D$, draw $(S$ perpendicular to $A D$ and $S P$.-Make S the point of fight, and O the place of the obferver's eye.

Take $S P$ equal to $S O$, and P fhall be the true point of diftance.-Draw $A S$ and $D S$ to the point of fight, and $A P$ to the point of diftance, interfecting $D S$ in G : then draw $B C$ parallel to $A D$, and the outlines of the reticulated fquare $A B C D$ will be finifhed.

From the divifion-points e, g, i, draw the ftraight lines ef, $g h, i k$, tending towards the point of fight S; and draw $B D$ for one of the diagonals of the

$$
\text { C. } 4 \text { fquare, }
$$

fquare, the other diagonal $A C$ being already drawn.

Through the points r and s, where thefe diagonals cut ef and $i k$, draw $l m$ parallel to $A D$. Through the cen-tre-point x, where the diagonals cut $g h$, draw $n o$ parallel to $A D$.-Laftly, through the points v and w, where the diagonals cut $c f$ and $i k$, draw $p q$ parallel to $A D$; and the reticulated perfpective fquare will be finifhed.

This fquare is truly reprefented as if feen by an obferver ftanding at O, and having his eye above the horizontal plane $A B C D$ on which it is drawn; as if $O S$ was the height of his eye above that plane: and the lines which form the fmall fquares within it have the fame letters of reference with thofe in Fig. 4. which is drawn as it would appear to an eye placed
placed perpendicularly above its centre x.

OPERATION IV.

To put a Circle in Perfpective.
18. If a circle be viewed by an eye placed directly over its centre, it appears perfectly round, as Fig. 2.; but if it be obliquely viewed, it appears of an elliptical fhape, as Fig. 3. This is plain by looking at a common wineglafs fet upright on a table.
19. Make a true reticulated fquare, as Fig. 4. of Plate II. of the fame diameter as you would have the circle; and fetting one foot of your compaffes in the centre x, defcribe as large a circle as the fides of the fquare will contain. Then, having put this reticulated
ticulated fquare into perfpective, as in Fig. 5. obferve through what points of the crofs lines and diagonals of Fig. 4. the circle paffes; and through the like points in Fig. 5. draw the ellipfis, which will be as true a perfpective reprefentation of the circle, as the fquare in Fig. 5. is of the fquare in Fig. 4 .

OPERATIONV.

To put a reticulated Square in Perjpective, as feen by a Perjon not flanding right againft the Middle of either of its Sides, but rather nearly even with one of its Corners.
20. In Fig. 6. of Plate II. let O be the place of an obferver, viewing the fquare $A B C D$ almoft even with its corner D.-Draw at pleafure $S P$ for
the horizon, parallel to $A D$, and make $S O$ perpendicular to $S P$: then, S fhall be the point of fight; and P the true point of diftance, if $S P$ be made equal to. $S O$.

Draw $A S$ and $D S$ to the point of fight, and $A P$ to the point of diftance, interfecting $D S$ in the point C; then draw $B C$ parallel to $A D$, and the outlines of the perfpective fquare will be finifhed. This done, draw the lines which form the leffer fquares, as taught in Oper. III. and the work will be completed._You may put a perfpective circle in this fquare by the fame rule as it was done in Fig. 5.

O P E R A-

OPERATIONVI.

To put a Cube in Perfpective, as if viewed by a Perfon ftanding almoft even with one of its Edges, and feeing three of its Sides.
21. In Fig. 7. of Plate II. let $A B$ be the breadth of either of the fix equal fquare-fides of the cube $A G$; O the place of the obferver, almoft even with the edge $C D$ of the cube, S the point of fight, $S P$ the horizon parallel to $A D$, and P the point of diftance taken as before.

Make $A B C D$ a true fquare; draw $B S$ and $C S$ to the point of fight, and $B P$ to the point of diftance, interfecting $C S$ in G.-Then draw $F G$ parallel to $B C$, and the uppermof perfpective fquare-
fquare-fide $B F G C$ of the tube will be finifhed.

Draw $D S$ to the point of fight, and $A P$ to the point of diftance, interfecting $D S$ in the point I : then draw $G I$ parallel to $C D$; and, if the cube be an opaque one, as of wood or metal, all the outlines of it will be finifhed; and then it may be fhaded as in the figure.

But if you want a perfpective view of a tranfparent glafs cube, all the fides of which will be feen; draw $A H$ toward the point of fight, $F H$ parallel to $B A$, and $H I$ parallel to $A D$: then $A H I D$ will be the fquare-bafe of the cube, perfpectively parallel to the top $B F G C$; $A B F H$ will be the fquarefide of the cube, parallel to $C G I D$, and $F G I H$ will be the fquare-fide paxallel to $A B C D$.

46 PERSPECTIVE
As to the fhading part of the work; it is fuch mere children's play, in comparifon of drawing the lines which form the fhape of any object, that no rules need be given for it. Let a perfon fit with his left fide toward a window, and he knows full well, that if any folid body be placed on a table before him, the light will fall on the left-hand fide of the body, and the right-hand fide will be in the fhade.

ODERATION VII.

To put a Square Pavement in Per/pective, confiting of any given Square Number* of equal black and robite Square Pieces of Marble, and vierved by a perfonflanding

* A fquare numoer is the product of any given number multiplied by itfelf. Thus, 147 is the fquare of 12 ; for 12 times 12 is 144 ; and 256 is the fquare of 16 .
at a diftance from it, almoft even with one of its Corners.

22. In Fig. I. of Plate III. let $S P$ be the horizon, $S O$ perpendicular to $S P$, O the place of the obferver, viewing the fquare black and white marble pavement $A B C D$, nearly even with the corner $D ; S$ the point of fight; P the point of diftance ($\oint 12$.), and the fide $A D$ be parallel to $S F$.

Suppose the fide $A D$ (equal to the breadth of the pavement) to be 16 feet, and that each fquare piece of marble in the pavement is a foot broad; then the whole pavement will contain 256 of thefe fquare pieces; for 16 times 16 is 256 ; that is, 256 is the fquare of 16 .

Divide $A D$ into i 6 equal parts, as $A b, b c, c d, \& c$. and from thefe points
of divifion, $b, c, d, \& c$. draw ftraight lines to the point of fight S.

From P, the point of diftance, draw the ftraight line $F D$, interfecting $A S$ in the point B; then, from B draw $B C$ parallel to $A D$, which will complete the outlines of the perfpective fquare-pavement $A B C D$.

Through the points where the diagonal $B D$ interfects the lines drawn from $b, c, d, e, \& c$. toward the point of fight S, draw ftraight lines parallel to $A D$ (as in Oper. III. and V.), and you will have divided the fquare-pavement $A B C D$ into 256 leffer fquares ; one half of which may be fhaded black, and the other half left white, to reprefent the 256 fquare pieces of black and white marble which compofe the pavement.

OPERA-

MADE EASY.

OPERATION VIII.

To put an oblong Square Pavement in PerSpective, whofe Length is equal to any given Number of Times its Breadth.
23. In Fig. I. of Plate III. fuppofe the given length $D F$ or $A E$ to be 32 feet, and the given breadth $A D$ to be 16. We have already got half the given length $D C$ in the perfpective fquare $A B C D$; and fuch another added to it will complete the perfpective figure of the pavement.

To the right-hand top-corner C of the fquare $A B C D$, draw the ftraight line $P C$ from the point of diftance P, interfecting $A S$ at E : from the point E draw $E F$ parallel to $A D$, and the outlines of the fecond fquare $B E F G$ will be completed; which, as in the

50 PERSPECTIVE
figure, may be divided into 256 leffer fquares, by the fame method that $A B C D$ was fo divided : and then, in perfective, the length of the oblong fquare pavement $A E F D$ will be twice as great as its breadth; and the whole will contain 512 leffer fquares.
24. If the given length be equal to three times the breadth, we muft have a third perfpective fquare $E G H F$ joined to the top of the fecond fquare $B E F C$.

From the point of diftance P, draw the ftraight line $P F$ to the right-hand top-corner F of the fecond fquare, and interfecting $A S$ at G : then from the point G draw $G H$ parallel to $A D$, which will complete the third perfpective fquare $E G H F$. - This fquare (like, the former two) may be fubdivided into 256 leffer fquares; and then
then we fhall have an oblong fquare pavement $A G H D$, whofe perfpective length is equal to three times each breadth, and divided into 768 leffer fquares.
25. And thus (as is plain by the figure) you may proceed, and make as many more perfpective fquares ($G I K H, I L M K, L N O M, \& c$.) as you pleafe.-There are ten fuch fquares in this figure ; and if we fuppofe each of them to be 16 feet broad, and paved with black and white marble, as $A B C D$ is, the whole pavement, being ten times as long as it is broad, will contain 2560 fquare feet of marble furface.

$$
\mathrm{D}_{2} \quad \text { QPERA- }
$$

OPERATION IX.

To put a Square Pyramid in Perspective, as if ftandeng upright on its Bafe, and vierved obliquely.
26. In Fig. 2. of Plate III. let $A D$ be the breadth of either of the four fides of the pyramid $A T C D$ at its bafe $A B G D$; and $M T$ its perpendicular height. Let O be the place of the obferver, S his point of fight, $S E$ his horizon, parallel to $A D$, and perpendicular to $O S$; and let the proper point of diftance be taken in $S E$ produced toward the left hand, as far from S as O is from S.

Draw $A S$ and $D S$ to the point of fight, and $D L$ to the point of diftance, interfecting $A S$ in the point B. Then from
from B, draw $B C$ parallel to $A D$; and $A B C D$ fhall be the perfpective fquare bafe of the pyramid.

Draw the diagonal $A C$, interfecting the other diagonal $B D$ at M, and this point of interfection fhall be the centre of the fquare bafe.

Draw $M T$ perpendicular to $A D$, and of a length equal to the intended height of the pyramid: then draw the ftraight lines $A T, C T$, and $D T$; and the outlines of the pyramid (as viewed from O) will be finifhed; which being done, the whole may be fo fhaded as to give it the appearance of a folid body.

If the obferver had ftood at 0 , he could have only feen the fide $A T D$ of the pyramid; and two is the greateft number of fides that he could fee from

54 PERSPECTIVE

any other place of the ground. But if he were at any height above the pyramid, and had his eye directly over its top, it would then appear like Fig. 3. and he would fee all its four fides $E F G H$, with its top t juft over the centre of its fquare bafe $A B C D$; which would be a true geometrical, and not a perfpective, fquare.

OPERATION X.

To put two equal Squares in Perfpective, one of which 乃all be directly over the other, at any given diftance from it, and both of them parallel to the Plane of the Horizon.
27. In Fig. 4. of Plate III. let $A B C D$ be a perfpective fquare on a horizontal plane, drawn according to the foregoing rules ($\$ \mathrm{I} 6$.), S being the point
of fight, $S P$ the horizon (parallel to $A D)$, and P the point of diftance.

Suppose $A D$, the breadth of this fquare, to be three feet; and that it is required to place juft fuch another fquare $E F G H$ directly above it, parallel to it, and two feet from it.

Make $A E$ and $D H$ perpendicular to $A D$, and two thirds of its length: draw $E H$, which will be equal and parallel to $A D$; then draw $E S$ and $H S$ to the point of fight S, and $E P$ to the point of diftance P, interfecting II S in the point G : this done, draw $F G$ parallel to $E H$; and you will have two perfpective fquares $A B C D$ and $E F G H$, equal and parallel to one another, the latter directly above the former, and two feet diftant from it ; as was required.
$\mathrm{D}_{4} \quad$ By

56 PERSPECTIVE

By this method, fhelves may be drawn, parallel to one another, at any diftance from each other, in proportion to their length.

OPERATION XI.

To put a Square Table in Perfpective, fanding on four upright Square Legs of any given Length with refpect to the Breadth of the Table.
28. In Fig. 4. of Plate III. let $A B C D$ be the fquare part of the floor on which the table is to ftand, and DFGH the furface of the fquare table, parallel to the floor.

SUPPOSE the table to be three feet in breadth, and its height from the floor to be two feet; then, two thirds of
$A D$ or $E H$ will be the length of the legs i and k; the other two (l and m) being of the fame length in perfpective.

Having drawn the two equal and parallel fquares $A B C D$ and $E F G H$, as fhewn in Oper. X. let the legs be fquare in form, and fixed into the table at a diftance from its edges equal to their thicknefs. Take $A a$ and $D d$ equal to the intended thicknefs of the legs, and $a b$ and $d c$ alfo equal thereto. Draw the diagonals $A C$ and $B D$, and draw ftraight lines from the points, a, b, c, d, towards the point of fight S, and terminating at the fide $B C$. Then, through the points where thefe lines cut the diagonals, draw the ftraight lines n and $0, p$ and q, parallel to $A D$; and you will have formed four perfpective fquares (like $A B C D$ in Fig. 2.) for the bafes of the

58 PERSPECTIVE
four legs of the table: and then it is eafy to draw the four upright legs by parallel lines, all perpendicular to $A D$, and to fhade them as in the figure.

To reprefent the intended thicknefs of the table-board, draw $e b$ parallel to $E H$ and $H G$ toward the point of fight S : then fhade the fpaces between thefe lines, and the perfpective figure of the table will be finifhed.

OPERATION XII.

To put an oblong Square Table in Perfpective, of any given Length with refpect to its Breadth.
29. Suppose the given length to be four feet, and the breadth to be three.
-In Fig. 6. of Plate II. let $A D$ be the length, and divide it into four equal parts, $A e, e g, g i, i D$: draw $A S$ and $D S$ to the point of fight S; and $A P$ to the point of diftance P.

Fron the point i, which is three fourths of $A D$, draw is toward the point of fight, till it meets the diagonal $A C$ in s : then, through that point of meeting, draw $l \mathrm{~m}$ parallel to $A D$; and you will have an oblong fquare $A l m D$, whofe breadth $A l$ or $D m$ is perfpectively equal to three quarters of its length $A D$.
30. Let the breadth of the table be equal to half its length $A D$.-From g, the middle point between A and D, draw $g x$ toward the point of fight S, till it meets the diagonal $A C$ in the point x; then, through the point x, diaw $n \circ$ parallel to $A D$, and you will
have an oblong fquare A no D, whofe length $A D$ is equal to twice its breadth $A n$ or D.
31. Suppose the length to be equal to four times the breadth.-From e, a fourth part of the diftance between A and D, draw $e v$ toward the point of fight S, till it meets the diagonal $A C$ at v; then, through that point of meeting, draw $p q$ parallel to $A D$, and you will have an oblong fquare $A p q D$, whofe length $A D$ is four times as great as its perfpective breadth $A p$ or $D p$.

In this manner, you may make the breadth bear any proportion to the length that you pleafe; and may put legs to the table, as fhewn in Oper. XI.

OPERA-

MADEEASY. 6I

OPERATION XIII.

To put five Square Pyramids in Perfpective, fanding uprigbt on a Square Pavement compooed of the Surfaces of 81 Cubes.
32. In Fig. r. of Plate IV. let $A B C D$ be a perfpective fquare drawn according to the foregoing rules; S the point of fight, P the point of diftance in the horizon $P S$, and $A C$ and $B D$ the two diagonals of the fquare.

Divide the fide $A D$ into 9 equal parts, (becaufe 9 times 9 is 81) as $A a$, $a b, b c$, \&c. and from thefe points of divifion, a, b, c, d, \&c. draw lines toward the point of fight S, terminating at the furthermoft fide $B G$ of the fquare. Then, through the points where thefe lines cut the diagonals, draw
draw ftraight lines parallel to $A D$ (as in Oper. III.), and the perfpective fquare $A B C D$ will be fubdivided into 8i leffer fquares, reprefenting the upper furfaces of 8 I cubes, laid clofe to one another's fides, in a fquare form.

Draw $A K$ and $D L$, each equal to $A a$, and perpendicular to $A D$; and draw $L N$ toward the point of fight S : then draw $K L$ parallel to $A D$, and its diftance from $A D$ will be equal to A a.-This done, draw $a l, b m, c n, d o$, $c p, f q, g r$, and $b s$, all parallel to $A K$; and the fpace $A D L K$ will be fubdivided into nine equal fquares, which are the outer upright furfaces of the nine cubes in the fide $A D$ of the fquare $A B C D$.

Draw $L N$ toward the point of fight S; and from the points where the lines which are parallel to $A D$ in

MADE EASY.

this fquare meet the fide $C D$ thereof, draw fhort lines to $L N$, all parallel to $D L$, and they will divide that fide into the outer upright furfaces of the nine cubes which compofe it: and then the outfides of all the cubes that can be vifible to an obferver, placed at a proper diftance from the corner D of the fquare, will be finifhed.

As taught in Oper. IX. place the pyramid $A E$ upright on its fquare bafe Atva, making it as high as you pleafe; and the pyramid $D H$ on its fquare bafe $b u w D$, of equal height with $A E$.

Draw $E H$ from the top of one of thefe pyramids to the top of the other; and $E H$ will be parallel to $A D$.

Draw $E S$ and $H S$ to the point of fight
fight S, and $H P$ to the point of diftance P, interfecting $E S$ in F.

From the point F, draw $F G$ parallel to $E H$; then draw $E G$, and you will have a perfpective fquare $E F G H$ (parallel to $A B C D$), with its two diagonals $E G$ and $F H$, interfecting one another in the centre of the fquare at I. The four corners of this fquare, E, F, G, H, give the perfpective heights of the four pyramids, $A E, B F, C G$, and $D H$; and the interfection I of the diagonals gives the height of the pyramid $M I$, the centre of whofe bafe is the centre of the perfpective fquare $A B C D$.

Lastly, Place the three pyramids $B F, C G, M I$, upright on their refpective bafes at B, C, and M; and the required perfpective reprefentation will be fininhed, as in the figure.

OPERA-

OPERATION XIV.

To put upright Pyramids in Perppective, on the Sides of an oblong Square or Parallelogran; fo that their Difances from one another fball be equal to the Breadth of the Parallelogram.

In moft of the foregoing operations, we have confidered the obferver to be fo placed, as to have an oblique view of the perfpective objects: in this, we fhall fuppofe him to have a direct view of Fig. 2. Plate IV. that is, ftanding right againft the middle of the end $A D$ which is neareft to his eye, and viewing $A D$ under an angle of 60 degrees. § 10.

Having cut $A D$ in the middle, by the perpendicular line $S s$, take S

E therein
therein at pleafure for the point of fight, and draw $E S$ for the horizon, parallel to $A D$.-Here $S s$ muft be fuppofed to be produced downward, below the limits of the plate, to the place of the obferver; and $S E$ to be produced towards the left hand beyond E, far enough to take a proper point of diftance therein, according to the foregoing rules.

Take $A d$ at pleafure, and $D g$ equal to $A d$, for the breadths of the fquare bafes of the two pyramids $A E$ and $D F$ next the eye: then draw $A S$ and $d S$, and likewife $D S$ and $g S$, to the point of fight S; and $D G$ on to the point of diftance, interfecting $A S$ in G : then, from G draw $G I$ parallel to $A D$, and you will have the firft perfpective fquare $A G I D$ of the parallelogram $A B C D$.

From I draw $I H$ to (or toward) the point of diftance, interfecting $A S$ in H : then, from H draw $H K$, parallel to $A D$, and you will have the fecond perfective fquare $G H K I$ of the paral-lelogram.-Go on in this manner (which is the fame with the method demonftrated in Oper. I.) till you have drawn as many perfpective fquares up towards S as you pleafe.

Through the point e, where $D G$ interfects $g S$, draw bf parallel to $A D$: and you will have formed the two perfpective fquare bafes $A b c d$, and ef $D g$ of the two pyramids at A and D.

From the point f (the upper outward corner of efDg) draw $f b$ toward the point of diftance, till it meet $A S$ in b; then, from this point of meeting,

$$
\mathrm{E}_{2} \quad \text { draw }
$$

draw $b m$ parallel to $G I$, and you will have formed the two perfpective fquares Gbik and $\operatorname{lm} I n$, for the fquare bafes of the two pyramids at G and I.

Proceed in the fame manner to find the bafes of all the other pyramids, at the corners of the reft of the perfpective fquares in the parallelogram $A B C D$, as fhewn by the figure.Then,

Having placed the firft two pyramids at A and D upright on their fquare bafes, as fhewn in Oper. IX. and made them of any equal heights at pleafure, draw $E S$ and $F S$ from the tops of thefe pyramids to the point of fight S : place all the reft of the pyramids upright on their refpective bafes, making their tops touch the ftraight lines $E S$ and $F S$; and all the work, except
except the fhading part, will be finifhed.
33. Remark.-IT muft be acknowledged, that there is fomething in this figure not quite agreeable to the eye; which is, that the two pyramids at G and I feem to be too far from thofe at A and D, when compared with the diftances between the reft.But this arifes from their being viewed (in the figure) at a greater diftance than the obferver is fuppofed to be at from the point of fight S; which is but 7 inches and three fourths of an inch, in viewing $A D$ under an angle of 60 degrees; whereas, in viewing the figure, we feldom bring the paper within lefs than a foot from the eye. But, if a perfon who looks at the figure will place his eye directly over the point of fight S, fo that an imaginary line $7 \frac{3}{4}$ inches long, from the point of fight, and perpendicular to the furE 3 face
face of the paper, fhall touch his eye, the difagreeable idea will vanifh, and the reprefentation will appear natural.

On which it may be proper to obferve, that, when people look at perfpective drawings, they generally keep their eye at a greater diftance than what would form an angle of 60 degrees with the boundaries of the object ; and therefore they fee it under an angle confiderably lefs than 60 degrees. And, for this reafon, it may be proper to inform the learner, that, in drawing perfpective reprefentations of objects, he had better put his fuppofed obferver's ftation fo far from the fide $A D$ next his eye, that it may not fubtend an angle of more than 45 degrees, or 50 at moft ; and then the drawings will have a much more agreeable appearạnce.

It is true, that this caution, though generally neceffary, is attended in practice with a fmall inconvenience; which is, that as the point of diftance muft always be placed as far from the point of fight as the obferver is fuppofed to be from it, the fchemes, though but fmall, muft be drawn on large paper; otherwife the point of diftance may fall without the limits of the paper ; as it does even in this figure, (Fig. 2.), on account of the breadth thereof from A to D, although it is drawn as if viewed under an angle of 60 degrees.-But this is of very little moment, as it is eafy to fix a long flip of paper by two wafers to the edge of that on which any fcheme is drawn; fo that the horimon-line may be extended out on that llip, to find the point of diftance therein, as far from the point of fight as you pleafe.

$$
\mathrm{E}_{4} \text { OPERA- }
$$

OPERATION XV.

To put a Rummer or Drinking-Glafs in Perfpective.
34. According to the foregoing method (Oper. X.), draw the two equal and parallel perfpective fquares $A B C D$ and EFGH in Fig. 3. of Plate IV. the latter directly above the former. Then, as in Oper. IV. put a perfpective circle in the lowermoft fquare for the bottom of the cup, and one in the uppermoft for the top or brim thereof, and draw out the reft of the figure in whatever fhape you pleafe.

OPERATION XVI.

To put a Square Pyramid of equal-fized Cubes in Perfpective.
35. Fig. 2. of Plate V. reprefents a pyramid of this kind ; confifting (as it were) of fquare tables of cubes, one table above another ; 8I in the loweft, 49 in the next, 25 in the third, 9 in the fourth, and I in the fifth or uppermoft. Thefe are the fquare numbers of $9,7,5,3$, and I .

If the artift is already mafter of all the preceding operations, he will find lefs difficulty in this, than in attending to the following defcription of it ; for it cannot be defcribed in a few words, but may be executed in a very fhort time.

In Fig. I. having drawn $P S$ for the horizon, and taken S for the point of fight therein, (the obferver being at 0), draw $A D$ parallel to $P S$ for the fide (next the eye) of the firft and lowermoft table of cubes. Draw $A S$ and $D S$ to the point of fight S, and $D P$ to the point of diftance P, interfecting $A S$ in the point B. Then, from B draw $B C$ parallel to $A D$, and you will have the furface $A B C D$ of the firft table.

Divide $A D$ into nine equal parts, as $A a, a b, b c, c d$, \&c. then make $A K$ and $D L$ equal to $A a$, and perpenclicular to $A D$. Draw $K L$ parallel to $A D$, and from the points of equal divifion at a, b, c, \&c. draw lines to $K L$, all parallel to $A K$. Then draw $b S$ to the point of fight S, and from the divifion-points $a, b, c, \& c$. draw lines with a black lead pencil, all tending
tending towards the point of fight, till they meet the diagonal $B D$ of the fquare.

From thefe points of meeting draw black-lead lines to $D C$, all parallel to $A D$; then draw the parts of thefe lines with black ink which are marked $1,2,3,4$, \&c. between $b E$ and $D C$ 。

Having drawn the firft of thefe lines βq with black ink, draw the parts $a i$, $b k, c l, \& c$. (of the former lines which met the diagonal $B D$) with black ink alfo; and rub out the reft of the black-lead lines, which would otherwife confufe the following part of the work. Then, draw $L F$ toward the point of fight S; and, from the points where the lines $\mathrm{I}, 2,3,4, \& \mathrm{c}$. meet the line $D C$, draw lines down to $L F$, all parallel to $D L$; and all the vifible
lines between the cubes in the firft table will be finifhed.

Make $i G$ equal and perpendicular to $s i$, and $q M$ equal and parallel to $i G$: then draw $G M$, which will be equal and parallel to $i q$. From the points $k, l, m, n, \& c$. draw $k n, l o, m p$, \&c. all parallel to $i G$, and the outfides of the feven cubes in the fide $G q$ of the fecond table will be finifhed.

Draw $G S$ and $M S$ to the point of fight S, and $M P$ to the point of diftance P, interfecting $G S$ in H; then, from the point of interfection H, draw $H I$ parallel to $A D$; and you will have the furface $G H I M$ of the fecond table of cubes.

From the points $n, o, p, q, \& c$. draw black-lead lines toward the point of fight S, till they meet the diagonal
$M H$ of the perfpective fquare furface GHIM; and draw s M with black ink toward the point of fight.

From thofe points where the lines drawn from n, o, p, q, \&c. meet the diagonal $M H$, draw black-lead lines to $M I$, all parallel to $A D$; only draw the whole firft line $\gamma \mathbf{I}$ with black ink, and the parts $2,3,4, \& c$. and $n t, 0 u$, $p v, \& c$. of the other lines between $y N$ and $M I$, and $G M$ and $\gamma \mathrm{r}$, with the fame; and rub out all the reft of the black-lead lines, to avoid further confufion. Then, from the points where the fhort lines $1,2,3$, \&c. meet the line $M I$, draw lines down to $q E$, all parallel to $M q$, and the outer furfaces of the feven cubes in the fide $M E$ will be finifhed; and all thefe laft lines will meet the former parallels $2,3,4$, $\& c$. in the line $q E$.
\%3 PERSPECTIVE
Make $t O$ equal and perpendicular to γt, and $y P$, equal and parallel to $t O_{3}$ then draw $O P$, which will be equal and parallel to $t y$.-This done, draw $O S$ and $P S$ to the point of fight S, and $P P$ to the point of diftance P in the horizon. Laftly, from the point 2 , where $P P$ interfects $O S$, draw $2 R$ parallel to $O P$; and you will have the outlines $O 2 R P$ of the furface of the third perfpective table of cubes.

From the points u, v, w, x, draw upright lines to $O P$, all parallel to $t O$, and you will have the outer furfaces of the five cubes in the fide $O y$ of this third table.

Fron the points where thefe upright lines meet $O P$, draw lines toward the point of fight S, till they meet the diagonal P 2; and from thefe points of meeting draw lines to $P R$, all parallel to $O P$, marking the parts 2, 3,

4, 5 , of thefe lines with black ink which lie between $Z Y$ and $F R$. Then, from the points where thefe lines meet $P R$, draw lines down to $y N$; which will bound the outer furfaces of the five cubes in the fide $P N$ of the third table.

Draw the line δ I with black ink; and, at a fourth part of its length, between δ and Z, draw an upright line to S, equal in length to that fourth part, and another equal and parallel thereto from Z to V; then draw $S V$ parallel to δZ, and draw the two upright and equidiftant lines between δZ and $S V$, and you will have the outer furfaces of the three cubes in the fide $S Z$ of the fourth table.

Draw $S S$ and $V S$ to the point of fight S in the horizon, and $V P$ to the point

30 PERSPECTIVE

of diftance therein, interfecting $S S$ in T; then draw $T U$ parallel to $S V$, and you have $S T U V$, the furface of the fourth table; which being reticulated or divided into nine perfpective fmall fquares, and the uppermoft cube W placed on the middlemoft of the fquares, all the outlines will be finifhed; and when the whole is properly fhaded, as in Fig 2. the work will be done.

OPERATION XVII.

To reprefent a double Crofs in Perspective.
36. In Fig. 3. of Plate V. let $A B C D$ and $E F G H$ be two perfpective fqures, equal and parallel to one another, the uppermoft directly above the lowermoft, drawn by the rules laid down in oper.

Oper. X. and as far afunder as is equal to the given height of the upright part of the crofs; S being the point of fight, and P the point of diftance in the horizon $P S$ taken parallel to $A D$.

Draw $A E, D H$, and $C G$; then $A E H D$ and $D H G G$ fhall be the two vifible fides of the upright part of the crofs; of which, the length $A E$ is here made equal to three times the breadth $E H$.

Divide $D H$ into three equal parts, $H I, I K$, and $K D$. Through thefe points of divifion, at I and K, draw $M O$ and $P R$ parallel to $A D$; and make the parts $M N, I O, P Q, K R$, each equal to $H I$; then draw $M P$ and OR parallel to $D H$.

From M and O draw $M S$ and $O S$
to

82 PERSPECTIVE

'to the point of fight S; and from the point of diftance P draw $P N$, cutting $M S$ in T : from T draw $T U$ parallel to $M O$, and meeting $O S$ in U; and you will have the uppermoft furface MTUO of one of the crofs pieces of the figure. __From R, draw $R S$ to the point of fight S; and from U, draw $U V$ parallel to $O R$; and $O U V R$ fhall be the perfpective fquare end next the eye of that crofs part.

Draw $P M x$ (as long as you pleafe) from the point of diftance P, through the corner M; lay a ruler to N and S, and draw $X N$ from the line $P x$;-then lay the ruler to I and S, and draw $\Upsilon Z S .-D r a \bar{w} X Y$ parallel to $M O$, and make $X W^{\top}$ and \mathscr{Y} equal and perpendicular to $X Y$: then draw $W B$ parallel to $X Y$, and $W X Y B$ fhall be the fquare vifible end of the other crofspart of the figure.

Draw

Draw $B K$ toward the point of fight S; and from U draw $U P$ to the point of diftance P, interfecting ΓS in Z : then, from the interfection Z, draw Z a parallel to $M O$, and $Z b$ parallel to $H D$, and the whole delineation will be finifhed.

This done, fhade the whole, as in Fig. 4. and you will have a true perfpective reprefentation of a double crofs.

OPERATION XVIII.

To put three Rows of upright Square Objects in Perfpective, equal in Size, and at equal Diftances from each other, on an oblong Square Plane, the Breadth of rebich foll be of any affigned Proportion to the Length thereof.
37. Fig. 2. of Plate VI. is a perfpective reprefentation of an oblong fquare plane, three times as long as it is broad, having a row of nine upright fquare objects on each fide, and one of the fame number in the middle; all equally high, and at equal diftances from one another, both long-wife and crofswife on the fame plane.

In Fig. r. $P S$ is the horizon, S the point of fight, P the point of diftance,
and
and $A D$ (parallel to $P S$) the breadth of the plane.

Draw $A S, N S$, and $D S$, to the point of fight S; the point N being in the middle of the line $A D$: and draw $D P$ to the point of diftance P, interfecting $A S$ in the point B; then, from B draw $B G$ parallel to $A D$, and you have the perfpective fquare $A B C D$.

Through the point i, where $D B$ interfects $N S$, draw ae parallel to $A D$; and you will have fubdivided the perfpective fquare $A B C D$ into four leffer fquares, as A aı N, Nie D, a $B k i$, and $i k G e$.

From the point C (at the top of the perfpective fquare $A B C D$) draw $C P$ to the point of diftance P, interfecting $A S$ in E; then, from the point E
draw $E F$ parallel to $A D$; and you will have the fecond perfpective fquare $B E F C$ 。

Through the point l, where $C E$ interfects $N S$, draw bf parallel to $A D$; and you will have fubdivided the fquare $B E F C$ into the four fquares $B b l k, k l f C, b E m l_{2}$ and $l m F f$.

From the point F (at the top of the perfpective fquare $B E F G$) draw $F P$ to the point of diftance P, interfecting $A S$ in I; then, from the point I draw $I K$ parallel to $A D$; and you will have the third perfpective fquare $E I K F$.

Through the point n, where $F I$ interfects $N S$, draw $c g$ parallel to $A D$; and you will have fubdivided the fquare $E I K F$ into four leffer fquares, Ecnm, mng $F, c I o n$, and noKg.

Frow

From the point K (at the top of the third perfpective fquare $E I K F$) draw $K P$ to the point of diftance P, interfecting $A S$ in L; then, from the point L draw $L M$ parallel to $A D$; and you will have the fourth perfpective fquare IL MK.

Through the point p_{3} where $K L$ interfects $N S$, draw $d b$ parallel to $A D$; and you will have fubdivided the fquare $I L M K$ into the four leffer fquares $I d p o, o p b K, d L q p$, and \quad q $M b$.

Thus, we have formed an oblong fquare $A L M D$, whofe perfpective length is equal to four times its breadth, and it contains i 6 equal perfpective fquares.-If greater length was ftill wanted, we might proceed further on toward S.

Take $A 3$ equal to the intended breadth of the fide of the upright fquare object A Q (all the other fides being of the fame breadth), and $A O$ for the intended height. Draw 018 parallel to $A D$, and make $D 8$ and 47 equal to $A 3$; then draw $3 S, 4 S, 7 S$, and $8 S$, to the point of fight S; and among them we fhall have the perfpective fquare bafes of all the 27 upright objects on the plane.

Through the point 9 , where $D B$ interfects $8 S$, draw 1 Io parallel to $A D$, and you have the three perfpective fquare bafes $A \leq 23,45^{\circ} 7$, $8910 D$, of the three upright fquare objects at A, N, and D.

Through the point 21 , where $e b$ interfects $8 S$, draw 14 II parallel to $A D$; and you will have the three perfpective fquares $a \pm 41516,171819$

20 , and 2III e22, for the bafes of the fecond crofs-row of objects; namely, the next beyond the firft three at A, N, and D.

Through the point v, where $C E$ interfects $8 . S$, draw a line parallel to $B C$; and you will have three perfpective fquares, at B, k, and C, for the bafes of the third row of objects; one of which is fet up at B.

Through the point x, where $f c$ interfects $8 S$, draw a line parallel to $b f$; and you will have three perfpective fquares, at b, l, and x, for the bafes of the fourth crofs-row of objects.

Go on in this manner, as you fee in the figure, to find the reft of the fquare bafes, up to $L M$; and you will have 27 upon the whole oblong fquare plane,

90 PERSPECTIVE

plane, on which you are to place the like number of objects, as in Fig. 2.

Having affumed $A O$ for the perfpective height of the three objects (at A, N, and D) next the obferver's eye, and drawn O is parallel to $A D$, in order to make the objects at N and D of the fame height as that at O; and having drawn the upright lines $415,7 W, 8 X$, and $D 22$, for the heights N and D; draw $O S$ and $R S$, ${ }_{15} S$ and $W S, X S$ and $22 S$, all to the point of fight S; and thefe lines will determine the perfpectively equal heights of all the reft of the upright objects, as hewn by the two placed at a and B.

To draw the fquare tops of thefe objects, equal and parallel to their bafes, we need only give one example, which will ferve for all.

Draw

MADE EASY.

Draw $3 R$ and 22 parallel to $A O$, and up to the line $R S$; then draw P Q parallel to $O R$, and P Q R fhall be the top of the object at A, equal and parallel to its fquare bafe A I 23 . -In the fame eafy way, the tops of all the other objects are formed.

When all the reft of the objects are delineated, fhade them properly, and the whole perfpective fcheme will have the appearance of Fig. 2.

OPERA-

OPERATION XIX.

To put a Square Box in Perfpective, containing a given Number of leffer Square Boxes of a Depth equal to their Width.
38. Let the given number of little fquare boxes or cells be fixteen, then four of them make the length of each fide of the four outer fides $a b, b c, c d$, $d a$, as in Fig. 3. and the depth $a f$ is equal to the width $a e$.-Whoever can draw the reticulated fquare in Oper. V. (Fig. 6. of Plate II.) will be at no lofs about putting this perfpective fcheme in practice.

OPERA-

OPERATION XX.

To put Stairs with equal and parallet Steps in Perfpective.
39. In Fig. r. of Plate VII. let $a b$ be the given breadth of each ftep, and $a i$ the height thereof.-Make $b c, c d, d e$, \&c. each equal to $a b$; and draw all the upright lines $a i, b l, c n, d p, \& c$. perpendicular to $a b$, (to which the horizon $s S$ is parallel), and from the points i, l, n, p, r, \&c. draw the equidiftant lines $i B, l C, n D, \& c$. parallel to $a b$; thefe diftances being equal to that of $i B$ from $a b$.

Draw $x i$, touching all the cornerpoints l, n, p, r, t, v; and draw 216 parallel to $x i$, as far from it as you want the lengths of the fteps to be.

94 PERSPECTIVE
Toward the point of fight S, draw the lines $a \mathrm{I}, i 2, k_{3}, l_{4}$, \& c . and draw 16 І5, 14 І3, $12 \mathrm{II}, 109,87,65$, 43 , and 21 , all parallel to $A b$, and meeting the lines $w_{5}, u_{1}, s i \mathrm{I}, \& \mathrm{c}$. in the points $\mathrm{I}_{5}, \mathrm{I} 3,11,9,7,5,3$, and I; then, from thefe points draw 15 I4, 13 12, II 10, $98,76,54$, and 32 , all parallel to $h a$; and the outlines of the fteps will be finifhed. From the point i6, draw i6 A parallel to $b a$, and $A x$ I 6 will be part of the flat at the top of the uppermoft ftep.-This done, fhade the work as in Fig. 2. and the whole will be finifhed.

OPERA-

OPERATION XXI.

To put Stairs zeith Flats and Openings in Perfpective, fanding on a Horizontal Pavement of Squares.
40. In Fig. 3. of Plate VII. having made s the point of fight, and drawn a reticulated pavement $A B$, as directed in Oper. III. and done it only with black-lead lines, becaufe many of them muft be rubbed out again; at any diftance from the fide $A B$ of the pavement which is neareft to the eye, and at any point where you chufe to begin the ftair at that diftance, as a, draw $G a$ parallel to $B A$, and take $a b$ at pleafure for the height of each ftep.

Tase $a^{\circ} b$ in your compaffes, and fet that

96 PERSPECTIVE

that extent as many times upward from F to E as is equal to the firft required number of fteps O, N, M, L, K; and, from thefe points of divifion in $E F$, draw $\mathrm{I} b, 2 d, 3 f, 4 b$, and $E k$, all equidiftant from one another, and parallel to $F a$; then draw the equidiftant upright lines $a b, t d, u f, v b$, $w k$, and $I m$, all perpendicular to $F a$; then draw $m b$, touching the outer corners of thefe fteps at m, k, h, f, d, and b; and draw $n s$ parallel to $m b$, as far from it as you want the length of the fteps K, L, M, N, O, to be,

Toward the point of fight S, draw $m n, l_{5}, k o, i 6, b p, f_{2}, d r$, and $b s$. Then, parallel to the bottom-line $B A$, through the points n, o, p, q, r, s, draw n8, 5 14, 615,716 , 117. and $2 s$; which done, draw $n 5$ and of parallel to $l m$, and the outlines of the fteps K, L, M, N, C, will be finifhed.

MADEEASY.

At equal diftances with that between the lines marked 8 and 14, draw the paralíel lines above, marked 9 10 1112 and I3; and draw perpendicular lines upward from the points n, o, p, q, r, s, as in the figure.

Make $H m$ equal to the intended breadth of the flat above the fquare opening at the left hand, and draw $H W$ toward the point of fight S, equal to the intended length of the flat; then draw $W P$ parallel to $H m$, and the outlines of the flat will be finifhed.

Take the width of the opening at pleafure, as from F to C, and draw $C D$ equal and parallel to $F E$. Draw $G H$ parallel to $C D$, and the fhort lines marked 33, 34, \&c. juft even with the parallel lines $\mathrm{I}, 2$, \&c. From the points where thefe fhort lines meet $C D$, draw lines toward the point of
fight S till they meet $D E$. Then, from the points where the lines 38,39 , 40 , \&c. of the pavement meet $C y$, draw upright lines parallel to $C D$; and the lines which form the opening will be finifhed.

The feps $F, 2, R, S, \mathcal{T}$, and the flat U above the arch V, are done in the fame manner with thofe in Fig. I. as taught in Oper. XX. and the equidiftant parallel lines marked 18, 19, \&c. are directly even with thofe on the left-hand fide of the arch V, and the upright lines on the right-hand fide are equidiftant with thofe on the left.

From the points where the lines 18 , 19, 20, \&c. meet the right-hand fide of the arch, draw lines toward the point of fight S : and from the points where the pavement-lines $29,30,3 \mathrm{I}$,

32 , meet the line drawn from A toward the point of fight, draw upright lines toward the top of the arch.

Having done the top of the arch, as. in the figure, and the few fteps to the right hand thereof, shade the whole, as in Fig. 4. and the work will be flnifhed.

And it is my opinion, that if the young artift is mafter of all the pereceding operations, he will underftand there two figures better by a bare view, than by any defcription that can be given of them.

OPERATION XXII.

To put upright conical Objects in Perpective, as if flanding on the Sides of an oblong Square, at diftances from one anG 2 other
> other equal to the breadth of the oblong.
41. In Fig. I. of Plate VIII. the bafes of the upright cones are perfpective circles infcribed in fquares of the fame diameter, as fhewn in Oper. IV. and the cones are fet upright on their bafes by the fame rules as are given in Oper. IX. and XIV. for pyramids, which we need not repeat here.

In the foregoing operations, we have confidered the obferver's eye to be above the level of the tops of all the objects, as if he viewed thofe in Plate IV. V. VI. and VII. when ftanding on high ground. In the three figures on Plate VIII. we fhall fuppofe him to be ftanding on low ground, and the tops of the objects to be above the level of his eye.

In Fig. r. let $A D$ be the perfpective breadth of the oblong fquare $A B C D$; and let $A a$ and $D d$ (equal to $A a$) be taken for the diameters of the circular bafes of the two cones next the eye, whofe intended equal height fhall be $A E$ and $D F$.

Having made S the point of fight, in the horizon, parallel to $A D$, and found the proper point of diftance therein, draw $A S$ and $a S$, to contain the bafes of the cones on the left-hand fide, and $D S$ and $d S$ for thofe on the right.

Having made the two firft cones at A and D of equal height at pleafure, draw $E S$ and $F S$ from their tops to the point of fight, for limiting the perfpective heights of all the reft of the cones. Then, according to the directionis in Oper. XIV. divide the paral-
lelogram

102 PERSPECTIVE

lelogram $A B C D$ into as many equal perfpective fquares as you pleafe; find the bafes of the cones at the corners of thefe fquares, and make the cones thereon, as in the figure.

If you would reprefent a cieling, equal and parallel to $A B C D$, fupported on the tops of thefe cones, draw $E F$; then EFGH fhall be the cieling, and by drawing ef parallel to $E F$, you will have the thicknefs of the floorboards and beams, which may be what you pleafe,

This fhews how any number of equidiftant pillars may be drawn of equal heights, to fupport the cieling of a long room ; and how the walls of fuch a room may be reprefented in perfpective at the backs of thefe pillars. It alfo fhews how a ftreet of houfes may be drawn in perfpective.

OPERA-

O P ERATION XXIII.

> To put a Square Hollow in Perspective, the Depth of which Joall bear any affigned proportion to its Width.
42. Fig. 2. of Plate VIII. is the reprefentation of a fquare hollow, of which the depth $A G$ is equal to three times its width $A D$; and S is the point of fight, over which the obferver's eye is fuppofed to be placed, looking perpendicularly down into it, but not directly over the middle.

Draw $A S$ and $D S$ to the point of fight S; make $S T$ the horizon, parallel to $A D$, and produce it to fuch a length beyond T that you may find a point of diftance therein not nearer S than if $A D$ was feen under an angle of 60 degrees.

104 PERSPECTIVE
Draw $D U$ to the point of diftance, interfecting $A S$ in B; then, from the point B draw $B C$ parallel to $A D$; and you will have the firft perfpective fquare $A B C D$, equal to a third part of the intended depth.

Draw $C V$ to the point of diftance, interfecting $A S$ in E : then, from the point E draw $E F$ parallel to $A D$; and you will have the fecond perfpective fquare $B E F G$; which, added to the former one, makes two thirds of the intended depth.

Draw $F W$ to the point of diftance, interfecting $A S$ in G : then, from the point G draw $G H$ parallel to $A D$; and you will have the third perfpective fquare $E G H F$; which, with the former two, makes the whole depth $A G H D$ three times as great as the width $A D$, in a perfpective view.

Drvide

Divide $A D$ into any number of equal parts, as fuppofe eight; and from the divifion-points $a, b, c, d, \& c$. draw lines toward the point of fight S, and ending at $G H$. Then, through the points where the diagonals $B D, E C$, $G F$, cut thefe lines, draw lines parallel to $A D$; and you will have the parallelogram $A G H D$ reticulated or divided into 192 fmall and equal perfpective fquares,

Make $A I$ and $D M$ equal and perpendicular to $A D$: then, draw $I M$, which will be equal and parallel to $A D$; and draw $I \cup$ and $M S$ to the point of fight S.

Divide $A I, I M$, and $M D$, into the fame number of equal parts as $A D$ is divided : and from thefe points of divifion draw lines toward the point of fight

$$
106 \text { PERSPECTIVE }
$$

S, ending refpectively at $G K, K L$, and $L H$.

From thofe points where the lines parallel to $A D$ meet $A G$ and $D H$, draw upright lines parallel to $A I$ and $D M$; and from the points where thefe lines meet $I K$ and $L M$, draw lines parallel to $I M$; then fhade the work, as in the figure.

OPERATION XXIV.

To reprefent a Semicircular Arch in PerSpective, as if it were flanding on two upright Walls, equal in Height to the. Height of the Obferver's Eye.
43. After having gone throurgh the preceding operation, this will be more eafy by a bare view of Fig. 3. in Plate VIII. than it could be made by any defcription;

MADE EASY. Ioy

defcription; the method being fo much like that of drawing and fhading the fquare hollow.-We need only mention, that $a T b E A$ and $D F c t d$ are the upright walls on which the femicircular arch is built; that S is the point of fight in the horizon $T t$, taken in the centre of the arch; that d (in Fig. 2.) is the point of diftance ; and that the two perfpective fquares $A B C D$ and $D E F C$ make the parallelogram \& $E F D$ of a length equal to twice its breadth $A D$.

OPERATION XXV.

To reprefent a Square in Perfpective, as viewed by an ()bferver flanding directly even with one of its Corners.
44. In Fig. 1. of Plate IX. let $A 9$ $B G$ be a true fquare, viewed by an obferver
ferver ftanding at fome diftance from the corner C, and juft even with the diagonal $C 9$.

Let $p S P$ be the horizon, parallel to the diagonal $A B$; and S the point of fight, even with the diagonal C9. Here it will be proper to have two points of diftance p and P, equidiftant from the point of fight S.

Draw the ftraight line 1 Iク parallel to $A B$, and draw $A .8$ and B ro parallel to $G S$. Take the diftance between 8 and 9 in your compaffes, and fet it off all the way in equal parts from 8 to r , and IO to 17 .-The line 1 I 7 fhould be produced a good way further both to right and left hand from 9 , and divided all the way in the fame manner.

From thefe points of equal divifion,

8, 9, 10, \&c. draw lines to the point of fight S, and alfo to the two points of diftance p and P, as in the figure.

Now, it is plain, that $a c b 9$ is the perfpective reprefentation of $A 9 B C$, viewed by an obferver even with the corner C and diagonal $C 9$.-But if there are other fuch fquares lying even with this, and having the fame pofition with refpect to the line I I7, it is evident, that the obferver, who ftands directly even with the corner C of the firf fquare, will not be even with the like corners G and K of the others; but will have an oblique view of them, over the fides $F G$ and $I K$ which are neareft his eye; and their perfpective reprefentations will be egf6 and bki3, drawn among the lines in the figure: of which, the fpaces taken up by each fide lie between three of the lines drawn toward the point of diftance p, and three
three drawn to the other point of diftance P.

OPERATION XXVI.

To reprefent a common Cbair, in an oblique View in Perfpective.
45. The original lines to the point of fight S, and points of diftance p and P, being drawn as in the preceding operation, chufe any part of the plane, as $\operatorname{lm} n_{13}$, on which you would have the chair L to ftand.-There are juft as many lines (namely two) between l and m, or I 3 and n, drawn toward the point of diftance p, at the left hand, as between l and I_{3}, or m and n, drawn to the point of diftance P on the right ; fo that $l m, m n, n I_{3}$, and $\mathrm{I}_{3} l$, form a perfpective fquare.

From the four corners l, m, n, I 3 , of this fquare, raife the four legs of the chair to the perfpective perpendicular height you would have them; then make the feat of the chair a fquare equal and parallel to $\operatorname{lm} n \mathbf{I}_{3}$, as taught in Oper. X. which will make the two fides of the feat in the direction of the lines drawn toward the point of diftance p, and the fore and back part of the feat in direction of the lines drawn to the other point of diftance P. This done, draw the back of the chair leaning a little backward, and the crofs bars therein tending toward the point of diftance P. Then fhade the work as in the figure; and the perfpective chair will be finifhed.

OPERA-

312 PERSPECTIVE

OPERATION XXVII.

To reprefent an oblong Square Table in an oblique Perfpective View.
46. In Fig، 1 . of Plate IX. M is an ablong fquare table, as feen by an obferver fanding directly even with C_{9} (fee Oper. XXV.), the fide next the eye being perfpectively parallel to the fide $a c$ of the fquare $a c b 0$.-The forementioned lines drawn from the line II7 to the two points of diftance p and P, form equal perfpective fquares on the ground-plane.

Chuse any part of this plane of fquares for the feet of the table to ftand upon; as at p, q, r, and s, in direction of the lines $o p$ and $r s$ for the two long fides, and $t s$ and $q r$ for the two ends;
and you will have the oblong fquare or parallelogram $q r s t$ for the part of the floor or ground-plane whereon the table is to ftand ; and the breadth of this plane is here taken in proportion to the length as fix to ten; fo that, if the length of the table be ten feet, its breadth will be fix.

On the four little perfpective fquares at q, r, s, and t, place the four upright legs of the table, of what height you pleafe, fo that the height of the two next the eye, at o and p, fhall be terminated by a ftraight line $u v$ drawn to the point of diftance P. This done, make the leaf M of the table an oblong fquare, perfpectively equal and parallel to the oblong fquare $q r s t$ on which the feet of the table ftands. Then fhade the whole, as in the figure, and the work will be finifhed.

114 PERSPECTIVE

If the line 117 was prolonged to the right and left hand, and equally divided throughout, (as it is from 1 to 17), and if the lines which are drawn from p and P to the right and left hand fides of the plate were prolonged till they came to the extended line 1 I7, they would meet it in the equal points of divifion. In forming large plans of this fort, the ends of flips of paper may be pafted to the right and left edges of the fheet on which the plan is to be formed.

CHAP.

C H A P. III.

The Defcription of a Machine, by wish any Perfon may delineate the true PerSpective Figures of Objects, without baving learned any of the preceding Rules.
47. HIG. 2. of Plate IX. is a plane of this machine, and Fig. 3. is a reprefentation of it when made ufe of in drawing diftant objects in perfpective. A fketch of it was given me feveral years ago by the late ingenious Dr Bevis, who then told me he had never feen one of the like conftruction; and as all thofe to whom I have had the opportunity of fhewing it, have told me that they never faw nor heard of fuch a one before, I have great reafon to believe that the Doctor was
the inventor of it, although he never made it public.

In order that it may be the eafier underftood, I have put the letters of reference to the plane (Fig. 2.) in fmall Italics, and the fame letters to the like parts of it in the perfpective view (Fig. 3.) in large Italics; that the reader may look at them both, as he goes on with the following defcription.

In Fig. 2. $a b$ ef is an oblong fquare board, reprefented by $A B E F$ in Fig. 3 . x and $y(X$ and $Y)$ are two hinges on which the part $c l d$ ($C L D$) is moveable. This part confifts of two arches or portions of circles $\mathrm{cml}(C M L)$, and $d n l(D N L)$ joined together at the top $l(L)$, and at bottom to the crofs bar $d c(D C)$, to which one part of each hinge is fixed, and the other part to a flat board, half the length of the
board $a b$ ef ($A B E F$), and glued to its uppermoft fide. The centre of the arch $c m l$ is at d, and the centre of the arch $d n l$ is at c.

On the outer fide of the arch $d n l$ is a fliding piece n (much like the nut of the quadrant of altitude belonging to a common globe), which may be moved to any part of the arch between d and l; and there is fuch another flider o on the arch $c \mathrm{ml}$, which may be fet to any part between c and l.-A thread $\operatorname{cpn}(G P N)$ is ftretched tight from the centre $c(G)$ to the flider $n(N)$, and fuch another thread is ftretched from the centre $d(D)$ to the flider $0(O)$; the ends of the threads being faftened to thefe centres and fliders.

Now, it is plain, that by moving thefe fliders on their refpective arches, the interfection $p(P)$ of the threads

II8 PERSPECTIVE
may be brought to any point of the open fpace within the arches.-In the groove $k(K)$ is a ftraight fliding bar $i(I)$, which may be drawn farther out or pufhed farther in at pleafure.

To the outer end of this bar I (Fig. 3.) is fixed the upright piece $H Z$, in which is a groove for receiving the fliding piece 2. In this flider is a fmall hole r for the eye to look through, in ufing the machine : and there is a long flit in $H Z$, to let the hole r be feen through when the eye is placed behind it, at any height of the hole above the level of the bar I.

How to delineate the Perfpective Figure of any diftant Object or Objects by Means of this Macbine.
48. Suppose you wanted to delineate
a perfpective reprefentation of the houfe $q \operatorname{srp}$ (which we muft imagine to be a great way off, without the limits of the plate), place the machine on a fteady table, with the end $E F$ of the horizontal board $A B E F$ toward the houfe, fo that, when the Gothic-like arch $D L G$ is fet upright, the middle part of the open fpace (about P) within it may be even with the houfe when you place your eye at Z, and look at the houfe through the fmall hole r. Then fix the corners of a fquare piece of paper with four wafers on the furface of that half of the horizontal board which is neareft the houfe; and all is ready for drawing.

Ser the arch upright as in the figure, which it will be when it comes to the perpendicular fide t of the up. right piece st fixed to the horizontal board behind D. Then place your eye

120 PERSPECTIVE

at Z, and look through hole r at any point of the houfe, as q, and move the fliders N and O, till you bring the interfection of the threads at P, directly between your eye and the point q : then put down the arch flat upon the paper on the board as at $S T$, and the interfection of the threads will be at W. Mark the point W on the paper with the dot of a black-lead pencil, and fet the arch upright again, as before : then look through the hole r, and move the fliders N and O till the interfection of the threads comes between your eye and any other point of the houfe, as p : then put down the arch again to the paper, and make a pencil-mark thereon at the interfection of the threads, and draw a line from that mark to the former one at W; which line will be a true perfective reprefentation of the corner $p q$ of the houfe.

Proceed in the fame manner, by bringing the interfection of the threads fucceflively between your eye and other points of the outlines of the houfe, as $r, s, \& c$. and put down the arch to mark the like points on the paper, at the interfection of the threads: then connect thefe points by ftraight lines, which will be the perfpective outlines of the houfe. In like manner, find points for the corners of the door and windows, top of the houfe, chimnies, \&c. and draw the finifhing lines from point to point: then fhade the whole, making the lights and fhades as you fee them on the houfe itfelf, and you will have a true perfpective figure of it.-Great care muft be taken, during the whole time, that the pofition of the machine be not fhifted on the table; and to prevent fuch an inconvenience, the table fhould be very ftrong and fteady, and the machine fixed to it, either by fcrews or clamps.

In the fame way, a landfcape or any number of objects within the field of riew through the arch, may be delineated, by finding a fufficient number of perfpective points on the paper, and connecting them by ftraight or curved lines as they appear to the eye. And as this makes every thing in perfpective equallyeafy, without taking the trouble to learn any of the rules for drawing, the operations muft be very pleafing and agreeable. Yet, as fcience is ftill more fo, we would by all means recommend it to our readers to learn the rules for drawing particular objects; and to draw landfcapes by the eye, for which, I believe, no perfpective rules can be given. And although any thing may be very truly drawn in perfective by means of this machine, it cannot be faid that there is the leaft degree of fcience in going that way to work.

The arch ought to be at leaft a foot wide at bottom, that the eye at Z may have a large field of view through it ; and the eye fhould then be at leaft $10 \frac{1}{2}$ inches from the interfection of the threads at P when the arch is fet upright. For if it be nearer, the boundaries of view at the fides near the foot of the arch will fubtend an angle at Z of more than 60 degrees, which will not only ftrain the eye, (\$ 10.), but will alfo caufe the outermoft parts of the drawing to have a difagreeable appear-ance.-Toavoid this, itwill beproper to drawback the fliding bar I, till Z be $14 \frac{1}{2}$ inches diftant from P; and then the whole field of view, through the foot-wide arch, will not fubtend an angle to the eye at Z of more than 45 degrees; which will give a more eafy and pleafant view, not only of all the objects themfelves, but alfo of their reprefentations on the paper whereon they are delineated. So
that,

I24 PERSPECTIVE, \&c.

that, whatever the width of the arch be, the diftance of the eye from it fhould be inthisproportion: As 12 is to the width of the arch, fo is $14 \frac{1}{2}$ to the diftance of the eye (at Z) from it.

If a pane of glafs, laid overwith gumwater, be fixed into the arch, and fet upright when dry, a perfon who looks through the hole r may delineate the objects upon the glafs which he fees at a diftance through and beyond it, and then transfer the delineation to a paper put upon the glafs, as mentioned in § 1 .

[^0]

Plate VIII.

Plate K.

Specinl $84-13$
5679

[^0]: J. PILLANS AND SONS, PRINTERS.

